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1. INTRODUCTION

There are several competing factors that limit the perfor nance of the

monopulse azimuth estimation accuracy in a noise and interference background.

The first is due to the fading phenomenon that results in a degradation in the

signal-to-noise ratio (SNR) as the target and interference signals approach

the out of phase condition. Pruslin [1]. in a simulation of the receiver noise

effects on monopulse performance, has observed that the estimator becomes

biased for low values of the SNR. Browne [2] in an int;rference -free analysis,

has calculated this bias exactly for all values of the SNR.

Closely related to the bics introduced by fading, is what we shall refer

to as the azimuthal bias that results when the interferer and the target signal

sources are located at different azimuths. Finally, the presence of inter-

fering signals causes the variance of the estimate to increase.

In this note we shall study rnainbeam and sidelobe interference and

noise effects simultaneously and use an analysis similar to Browne's to

compute an exact expression for the estimator bias. We specialize our results

to real antenna patterns and obtain an expression cor the bias that holds for

the high and low SNR situations, hence, wt obtain the azimuthal bias and the

fading bias simultaneously. Numerical results are given for some typical

operating conditions and it is shown that the bias c,-n be a large frac~ion of

a beamwidth. V
Some further analytical results are obtained for the case of sidelobe

interference for real antenna patLtrns. It this case too, it is possible for an

ATCRBS (Air Traffic Control Rada,, Beacon System) interferer that is located

in a large near-in sidelobe to cause bias errors that are a large fraction of l

a beamwidth.
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In addition to introducing a deterministic bias to the azimuth estimate,

interference causes the random error to have an increased variance.

We obtain a general expression for the variance that applies to the mainbeam

and sidelobe interference cases using an analysis similar to that developed

by Sharenson [3] who analyzed the noise-only case. Numerical results are

given that show that the variance also depends critically on the relative

phase between the target and interference signals.

These general expressions for the bias ant4 the variance of the mono-

pulse estimate provide the tools needed to thoroughly understand the effects

of interference. These are essential in the evaluation of signal processing

techniques to overcome the effects of interference. The leading candidate

at the moment, is the monopulse interference detector and data editing

scheme followed by an outlier test. Although this is the subject of a sepa-

rate paper [4] the results of the present study are the background for the

succeeding analysis.

2. INTERFERENCE EFFECTS ON ESTIMATE BIAS

We restrict our attention to sum-difference (even- dd) monopulse pro-

cessing that is performed on a sampled-data ,asis. Assuming rrixer pre-

amplifiers at the output of the sum and difference beams, the received sig-

nals in the presence of interference are mcdelled bý

Li



', A• ef~ G Le G(i

=Ae G.(e)+A (9 +n1 i=l,+ n

where yl' YZ refer to the outputs of the sum and difference beams; As, qs5  -

85 and AT, *r I a&e the amplitude, phase, and a-zimuth of the target and Interference

respectively; Ga(), G2 ( ) are the antenna patterns of the sum and difference beams,

and these may be complex in general; na, n2 are the independent, zero mean Gauesian

noise samples due to the mixer preamps whose real and Imaglnary parts have vari -

ance 2.

An azimuth estimator that is often used in practice is given by

the relation

A
E() = Re(y,/yI) (2)

where the monopulse function, E(e), is simply the normalized difference

pattern,

E(e) = G2(8)/GI(e) (3)

In most cases of practical interest, this ft'nction is well approximated by

a linear characteristic, hence we can write

k( 8 /8B) (4)

where 8B refers to the 3 dB beamwidth of the antenna patterns and k is a

standard parameter that arises in the characterization of monopulie systems.

3
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Usually 1 '9 k 9 Z with k = 1. 5 being a typira3 value. When this approximation

is valid, the azimuth estimate is readily generated as

1 J (5)

We will incorporate 8B into our definition of 8 ind hence express all our

results in units of a 3 dB beamwidth.

Our goal is to compute the mean and variance of (5) when inter-

ference is present im the sum and difference signals as given by (1). We

begin by letting

=A G(9 )e 5 + A G (6)e 1 Ve (6)
-si s

Since ni are complex Gaussian variates, they can be expressed as

ni- N; exp) je! where N. are Rayleigh and & are uniform random variables.

Using these definitions in (1) we have

yi V e + NB 1[V)]" 7y+ N.el = e [Vie )+ N.7)

J4



Since a, and are independent and uniform, then so too are Ol -I

We apply these relations to evaluate (5) by writing

* ~ e(LRe('y. 12

2

V2 + 2V1Nlcoscl + N1 +2

Following Browne [2] we first average (8) over o2 Since this is uniform on

(0, Zr), we have

A V cos(f $1) (V 1 + Nlcosoý) + V Nlein($, - $1)sinaIE (k 9) = ... . . (9)

012 V1 +N1 1 + 2V1NlCOS1

Next he ai erages over &1 In the Appendix this is shown to give

0 if N >V

E (ke) VzifN 1  (10)
vCos ($iN<

5



Since N1 is the magnitude of a complex Gaussian random variable having

variance Z a , it has the Rayleigh distribution

p(N 1 ) 1 exp - 4f2 orN -0 (11)

Then averaging (0) over N/ gives

V 2

E,6 =• coV~ - 1I •1 e2 1•

[i-exps)] (12)

It should be noted that when interference is absent, A 1 0

and from (6) we see that $1 = B and (12) reduces to the same expression

obtained by Browne. However, we are now in a position to determine the

effects of Lnterference on the azimuth bias. To do this %,e need to evaluate

VI, VZ/V and 82 - 0I from (6).

Before perfermirg this evaluation we first note that the tar,,et of

interest lies wi-;hin the mainbeam of the antenna, hence we may assume that

Gl(0s) ana G (as) are real functions of " . Whereas the sum and difference

beams are in phase over the antenna beamwidth, small errors in the ampli-

tude and phase tapers render them complex in the sidelobes. Since the

6



interference can be located in the mainbeam or within the sidelobes of the

antenna, then Gi (I) must be considered to be complex in general. To make

this explicit we write

G(8@) Ai (8i) exp Yi (61 ) (13)

Then substituting this into (6) we can easily show that

i/z

V =AG (es) + 2ArAG.(G IAi 1 ) cos [cp+'(O) + A, ý(e1

(14)

I S A G. (6) + AýA,(0 1 )cos [cD +.(GI)

where m - cs is the relative phase between the target and interference

signals. Using thege expressions in (12) and performing straightforward

but tedious trigonometric manipulations we zan show that the first moment

of the azimuth estimate is

A,22 ( A (8) A 2___
0- 9 1 - z+p I+o 2P , (G(i-j+ + Y a

0 G I 1 G I ( As

(16)

where p = A I/A represents the interference-to-signal ratio (ISR) prior

to any processing and
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kO
0

2 2_
G(8 A A [(9 A A2  G( A2 A 1 AZ

A2 2 A 2

+1 + 20 -cos(ci+•l)+p C (17)

G-G G(8 A2 si 2 2is A G sG

1 1 G (0 G2

Ls
whe re

These are the-key expressions we need to fully understand the deterministic

aspect of the azimuth error introduced by interferen:e.

3. SPECIAL CASE: REAL, ANTENNA PATTERNS

The results that have been obtained to this point arc free of any

approximating assumptions and apply to the general case o2 complex antenn,.

patterns. Unfortunately it is difficult to draw aralytical conclusions from

these expressions because of the large nu-mber of param.-ters that would have

to be examined simultaneously. Results for the g-,ieral c-tse wlll be obtained

using a -omputer simulation. There is one case of considerable practical
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importance that we can explore analytically. This is the situation in which the

antenna patterns are real, which is a reasonably accurate model for the high

near-in sidelobes of the antenna. For this case we assame that

Ai() sin'f(e )0 i =, 2 (19)
ii i

and then define

G. (6 ) A: (8,) cos T.( (Z0)

which we note are real functions for all values of 0 Using this assumnption,(16)

and (1 7) become

2 2 2-a
7 A G (0) Gi0) (e)

1 l C2 1 + I eI ) cos :+ p ] (1
0 21s G (8 1

"wihere no,%

GI(8-,) G (A I((6GI)
j P (; 1G,(1 ) o 1 s 1

G 1(1) [G 1 (0s G 1(A) + G 1 (9 )JCos ýP + C 610 G( 1) (0) (2

00(2

1s G_(9)

9
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We recall that p A /A representa the interkc: ence.-tf-signal ratio (ISR) prior

- to any processing. The measured ISR at thc outp::ts of the antenna ports is

given by

A G(e) G (8)

Although both definitions of ISR are important parameters of the system, it

is convenient to rewrite (21) and (22) in terms of p. In this case the mean

value of the azimuth estimate is given by

2 2
r-AG (9 2

I exp -2- (1 + 2 0 CoscD++p 0 1 (24,SKo / . oil

where now

G 2 (09) Gk(0s) G2 (0I) 2 2 GZ(8)
+ G cos •r+ ° •

G 0 G (9 o G (0

0 1 + 2 P Cos M + P2

0 0

It is interesting that the performance depends only on the monopulse function

E(8) = G 2 (e)/GI(6). In most cases of interest the target will be located within

t&'e 3 dB beamwidth of the antenna. Therefore, using (3) and (4) we can write

Gl(6s) =ks(Lo

G (9)

10
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where 0 is measured in 3 dB beamwidt hs. In the case of mainbea- inter-

ference this linearity propert- will also be valid, but in more general cases

E(91 ) will olrnply take on the values of the normalized difference. patterm. TQ

handle this situation we define an equivalent azimuth

~ c~(~ 1 )(27)F
k G(0)

and note that whenever 8 is within the 3 dB bearnwidth of the antenna 6 0t.

in Figure l(a) we have plotted the equivalent azimuth for a monopulse antenna

configuration that hab a 40 bearnwidth &r-d. ach-ieves -20 dB peak sdelobe level

on both the "sum" and "difference" bean's. Assuming that 9I is uniformly

distributed in (--, T), Figure 1(b) shows the probability distribution function

of the equivalent azimuth. This shcws that ":most of the timet " the equivalent

azimuth will be less than 2 beamwidths, hence, for the purpose of anal7sis,

we can study the cases of inainbeam and sidelobe interference simultaneously.

Then using (26) and (27) in (25) we can express the first moment of the azimuth

estimate as

22 o
A A 5G 1(a s1

s 1 oex1 (l+ZQ coscD+D (28)

2-
-+o (0 + CScos n+0

A s 05 I 01
8= 2 2 (29)

I+o cspo

11
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It is from this equation that wC Lan begin to make some general

statements regarding the performance of the azimuth estimator. We shall

first show how the results are consistent with those previously obtained and

then go on to consider cases that have not yet been explored in the literature.

(a) Case 1: No Interference

When there is no interference, A1 = 0, hence 0 = 0 and from

(28) and (29) the average value of the estir:mate is

A~ ~ sG (30e= el 1 exp (30)
s e2 2  J

This is the result obtained by Browne [2] and describes analytically Pruslin's

observation [1] that as the SNR, As 2 G (es )/2a ,decreases, the monopulse

estimate is biased towards the antenna boresight.

We have tabulated (30) in Table 1 from which it can be seen that

for SNR's above 8 d.B, the bias can be considered to be negligible. Since in

the Air Traffic Control (ATC) system the SNR will be at least 20 dB, this

effect will Lie insignificant unless fading occurs, as willbe discussed in the

next section.

13



Table 1. Variation of Bias with SNR

SNR (dB) e - 9
9S

B

0 0.37
3 0.135

3.6 0.
4.76 0.05
6.6 0.01
7.25 0.005
8.39 0.001
8.8 0.0005
9.64 0.0001

(b) Case 2: Fading

If the target and interference signals arrive from the same azimuth

(multipath from a flat earth for example) then e= O = and (28) and (29)

reduce to

A 2 G2 (0

1 exp (1 + 20oCos + (31)

This demonstrates the existence of a fading bias thac can occur even at large

SNR when the interference signal occurs out of phase with the target and

tends to cancel its energy. From Table 1 we conclude that the bias due to

fading will be negligible as long as tii' effective SNR is greater than 8 dB.

This will be the case if

14



A2 G2 (
a 1 (1 + >+ j )>-6.3 (32)

2ca2  (1 co P

For a 20 dB SNR, this shows that fading could become a problem only if

.75< Po < 1.25.

(c) Case 3: Azimuthal Bias

Next, we consider the case in which the SNR is large and the

interference is of low enough power that the exponential term in (28) is

negligible. Then (29) reduces to

2
Ses + (es + e) Oo Cos T+ Po PI

e- + PCosM 2 (33)
1 + Zp• coscn•+ o

0 0

This result is sufficiently general to describe the cases of mainbeam and

sidelobe interference. Notice that when es 9 1 then 6 e and thes

estimator is unbiased. Therefore a bias is obtained only when 0s '

namely when the target and interference signals are separated in azimuth.

It is for this reason that we refer to this effect as the azimuthal bias.

To obtain some physical appreciation for the behaviour of the

estimator we consider a specific case of interest. We assume the

target is located on boresight at 20 dB SNR. Therefore, 6 = 0 and

slI
, dB beamwidth so that 6 = 01 = . 5. To within a good approximation the sum

2
beam is quadratic over the beamwidth, hence G1 (0) 1 - 1.76 . Since the

15
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output interference-to-signal ratio is p = 0 Gl(8l)/Gl(6 )where p = AI/As

we sca that Po = "707p. Iquation (33) is plotied as a function of the relative

phase angle for various values of 0. The results are shown in Figure 2.

Equation (28) was also plotted but there -as no discernable difference in the

resulting curves at least for the values of p we used. In Figure 3 these

equations were again plotted for p nearer to unity and the lading effect can

be observed at the out of phase condition. Since there is only a small range

of values for which this effect is observable and since its effe:t is, if anything,

beneficial, we shall neglect the fading bias in the rest of our work and restrict

our attenti)n to the azimuthal error as described by (29).

The bias in the estimate can be written as

be (e-e)p P 0 2 (34)

I + 
0PoCOSCD+PO

where Po and 6, are given by (23) and (27) respectively. Therefore for small

values of Po' e = 9s while for large values 9 = 1 which shows how the inter-

ferer "captures" the estimate. For intermediate values, curves like those 3

shown in Figures 2 and 3 are obtained which demonstrate the so-called scin-

tillation effect which is a term used to describe the fact that the azimuth

estimate lies outsiie the azimuth interval (s) OP.

I,

16
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(d) Case 4: Effects of Relative Phase

It is reasonable to model the phase as a uniformly distributed

random variable on (0, Zrn). Then averaging over phase, it is easy to show

that

2Tt 0 ifP 1 l
I f b(cp) d c (35)

0 1 if > l

In a practical situation, the key issue is how correlated the phase is from

sample to sample within a reply. For multipath, the correlation time can

be several seconds because the phase relationship dapends on the relative

path lengths between the direct and multipath signals and for typical aircraft

speeds, these change slowly. For ATCRBS interference, the phase difference

will be independent from sample to sample since the transmitter tube is in-

coherent from pulse to pulse. However, since there are relatively few inter-

ference samples in any one reply, the inherent averaging due to phase

cannot reliably be exploited and we must face the possibility of having to

deal with the large errors shown in Figure 2.

19
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(e) Case 5: Sidelobe Interference

Although all of the results given so far are applicable to mainbeam

and sidelobe interference, there are some remarks that -re worth noting for

the latter case. In the case of ATCRBS sidelobe interference, it is possible

that A /A' can be much larger than.unity. Let us suppose for example that theIs

DABS target is at maximum range (100 mi) and the ATCRBS interferer i, at

the same power, but at a close in range (10 mi say). Then the 20 dB decrease

in ISR due to the antenna sidelobes is compensated by the 20 dB increast in

power due to the range difference. Then 0 can be near 0 dBand since the 21

equivalent azimuth is of the order of 1 or 2 beamwidths then, as we have

seen, large bias errors can be expected. Therefore we conclude that if a

; trong ATCRBS signal is being received in a near-in sidelobe, the monopulse

azimuth estimate can have a large bias that exý.ibits the same dependence on

the relative phase between the DABS and ATCRBS transponders that was

shownto exist for mainbeam interference. Furthermore, it is clear that very

low sidelobes is not a sufficient means of eliminating the effects of this inter-

ference. Therefore, at !east one additional level of data processing will be

needed to improve the quality of the azimuth estimate for these cases. This

is referred to as monop-,se d&.ta editing and will be discussed in a later

paper [4].

20



For sidelobe rnuitipathi, on the other hand, we can reasonably expect

that the reflection coefficient, A. 1A ~ . 707. For antenna patterns with 20dBS S

peak sidelobe levels, this puts p less than .07. From our studies so far we

know that the bi:,s error peaks when the direct and multipath signals are vi out

of phase. Using (34) the bias error can be bounded. by

•~P0

lb(p)i 1 0 e I - P le - e (36)
0

where the last approximation follows from the fact that o is quite a bit less

than unity. For a DABS target on boresight, 0 = 0 and then using (23) and (27)

the bound becomes

A G
1 1 G2 (81 )

k A G(37)

which shows that the bias error depc"-ds on the sidelobe level of the differ-

ence pattern relative to the sum beam gain. For the example studied, k = 1. 5,

AI/A A 707 and G2(01)/ G(1 )(0 . 1, which yields a peak bias error .047

3 dB beamwidths.

4. INTERFERENCE EFFECTS CN ESTIMATE VARIANCE

In this section we will compute the variance in the monopulse azimuth

estimate. Sharenson [3] has studied this p-oblem for the case when the in.er-

ference consisted only of receiver noise. We shall extend his analysis to in-

clude the effects of mainbeam and sidelobe interference. We begin with the

equivalent signal model formulated in (1), (2), and (5). The monopulse estim-

ator of interest is

21



A Re(y y)e I12 (38)

which gives the azimuth estimnate in 3 dB beamwidths. I rom (1) and (6),

y. =u. +n. (39)

so that
Sn

2 2 12 2
u 1

where the last approximation holds provided the equivalent SNR, I", 122

is large enough, typically ! 12 dB. Then the moments of (38) can be com-

puted by evaluating the momen t s of

z = Re(yY ) (41)

Since the noise terms n 1 and n 2 are independent, the first moment is simpl)

z Re( 1U 2  (42)

and hence the first moment of the azimuth estimate is given appro-:imately by

A_ 2 co

k V Cos (8z i) (43)

22



which is the same result we obtained in the last section when the effective

SNR was greater than 8 dB. Proceeding further, the second moment of (41)

can be calculated using the identity Re(x)Rey)= jRe(xy ) + 1Re(xy.) In this

case we let x= y= y1 y 2 and then

Z = 1yl y 2! +-IRey2Y2  (44)

2 2 2
From (39) and using the fact t'-at in il = 2a , n. = 0, we obtain

2 , 2 4
Iyif I 11 i Y (45a)

2 2
Yi U ui (45b)

Combining (42). (44) and (45) we can show that the variance of z is

2 -2U (461

Finally we use (40), (46) and (38) to show that the variapce of the azimuth

e stim•.-te is

War(O - k2 12I( (47).

k|

23z L_1



Since i = V., then (47) could be expresb'd in terms of the complex antenna

pattern parameters by using (14). Unfortunately the resulting expressions

are complicated and in order to obtain some meaningful analytical statements

it is not fruitful to retain the most general equations. Therefore, we shall

follow the direction of the preceeding section and restrict our attention to the

case of real antenna patterns. In ;ddition we note that (47) describes the

estimate variance only when the effective SNR is large. This means that

IU t212a >>l, hence we *zan also neglect the effects of the second order

SNR term that appears in (47). Under these conditions we can then use (14)

for real antenna patterns and show that the variance reduces to

2 -. 2
l+k e e l+k 86

2 2 1-2p 0I 2 2
22 COSp--

2 l+k 1 1+k " l+k 8
Var _ 2) - S (48)

AsG (O) k1 + 20 Cos T + po0Z

where, as in the case of the bias effects, 0o and are given by (231 and (27).

In the next few paragraphs we shall consider some more specialized

cases.

(a) Case 1: No Interference

When there is no interference, A, 0, hence p 0 and from (48)
I 0

".;ie see that the variance is simply

24
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2 1 + k282
A S(

Var (e) 2 ?.2(9

which is the result obtained .q Sharenson [31 and others, and shows that the

variance decreases with SNR and the slope of the normalized difference

pattern and increases with the degree to which the target is off boresight.

'b) Case 2: Fading

If the target and interference arrive from the same azimuth

(multipath from a flat earth for exaniple) then 81 O s and (48) becomes

2 1 +k8@
A a s 1

Vart(0) A22 • 2 2 (50)
A G(9) k I + 2 PoCosT+ P

s 1 s 0 0

which shows that when multipath fades occur there can be a reduction in the

effective SNR which in turn leads to an increase in the variance. In the last

section we found that a bias error was also introduced in the fading situation.

(c) Case 3: Azimuthal Variance

When the target and interferer are at different azimuths we see

from (46) that the variance will be further increased. Typical results are

plotted in Figure 4 for the case of a target on boresight at 20 dB SNR

and an interferer located at the edge of the 3 dB beamwidth. We see that the
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Fig. 4. Variance of the azimuth estimate in the presence of interference.
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most significant degradation in performance occurs at the out-cf-phase con-

dition. However, the magnitude of the errors is much smaller than the con-

tribution due to the bias, and furthermore since the errors are random,

their effect can be further reduced simply by averaging many of the estimates.

* Therefore, we conclude that the bias error is likely to be the raore troublesome

"problem for ATC direction finding.

5. CONCLUSIONS

An exact expression for the bias of a two beam monopulse azimuth

estimate has been derived that describes the degradation in performance due

to receiver noise and ATCRBS and multipath interference. At low SNR and

high ISR the bias tends toward boresight, although fox all practical purposes

the net effect of this bias is negligible. More important is the azimuthal bias

that describes the so-called scintillation of the azimuth estimate that has

been observed in many monopulse tracking problems. Depending on the

values of the SNR, ISR and the relative phase between the DABS and inter-

ference signals, the bias can be quite significant even when the interfering

signal arrives through a low level sidelobe.

A first order analysis was used to obtain the variance in the

azimuth estimate when interference is present in a noisy background.

Although the results indicate that the random errors will nu. "oe insignifi-

cant, the deterministic bias error will be, by far, the more dominant effect.
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For ISR's less than -10 OB, the effect of the interference is negligible.

As this quantity increases, the bias and variance increase and errors that are

of the order of a be.rnwidth can be obtained. For ISR's between + 10 dB there

is a strong dependence on the relative phase, with a peak error occurring at

the out-of-phase c ondition. As the ISR is further increased, this peaking

effect subsides until the interference completely captures the monopulse

processor which at this point would track the interference target.

Although the results are applicable to analyzing the effects of

ATGRBS interference and multipath, a distinction between thL two phenomena

should be noted. For multip-th, the direct and indirect signals are at the

same frequency and coherent in the sense that their relative phase may be

constant during several seconds duration. For ATCRBS interference,

however, the transponders are incoherent from bit to bit and possibly for

samples within a bit since there may be carrier frequency offset. Therefore,

in the ATCRBS case, there will be averaging that can be exploited to reduce

the overall bias error, in which case the effect of the increased error

variance would become a more important effect. From a processing point

of view, this could be overcome bv; using more samples to form the azimuth

e stimate:.

In a separate study [4] the performance of the maximum likelihood

interference detector has been presented in detail. The next step is to com-

bine the results of both studies to evaluate the data editing concept. This

will determine wvhether there is any promise to the idea of introducing an

additional level of data processing to improve the overall quality of the

azimuth estimate.
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APPENDIX

To compute the average of (9) with respect to &IS a uniformly

distributed random variable on (0, 2n) we have

1 /. Zrr

A sil(_- 1 ) • •1 V + V N 1 Cos iy

0 V 2 +N + 2V N cosai .

+Iin V2 f V 1Nlsin 01 d¢•l

V1 +N1 11+2V1N Cos i

Since the integrand of the ;.econd term is an odd function, its integral is

zero. Using standard integral tables, Browne showed that the integral in the

first term reduces to

1 2 Z + 2 2 J
Cos2 VIT + 1. 1 daI

c (-1)4TT VI V• 2 +N2 6 2V INI 1

1_ 1 + Cos &___

1V2 VI2'N .1 4V12N12

Cos 1+2 V 2 2 21 2 J
v +N1 (V +N
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where the positive square root is understood. Therefore

0 if N <V
A

E (kO) 1
Vz

cos( - if N > V 1

as given in (10).
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